Decomposition, reformulation, and diving in university course timetabling
نویسندگان
چکیده
In many real-life optimisation problems, there are multiple interacting components in a solution. For example, different components might specify assignments to different kinds of resource. Often, each component is associated with different sets of soft constraints, and so with different measures of soft constraint violation. The goal is then to minimise a linear combination of such measures. This paper studies an approach to such problems, which can be thought of as multiphase exploitation of multiple objective-/value-restricted submodels. In this approach, only one computationally difficult component of a problem and the associated subset of objectives is considered at first. This produces partial solutions, which define interesting neighbourhoods in the search space of the complete problem. Often, it is possible to pick the initial component so that variable aggregation can be performed at the first stage, and the neighbourhoods to be explored next are guaranteed to contain feasible solutions. Using integer programming, it is then easy to implement heuristics producing solutions with bounds on their quality. Our study is performed on a university course timetabling problem used in the 2007 International Timetabling Competition, also known as the Udine Course Timetabling Problem. The goal is to find an assignment of events to periods and rooms, so that the assignment of events to periods is a feasible bounded colouring of an associated conflict graph and the linear combination of the numbers of violations of four soft constraints is minimised. In the proposed heuristic, an objectiverestricted neighbourhood generator produces assignments of periods to events, with decreasing numbers of violations of two period-related soft constraints. Those are relaxed into assignments of events to days, which define neighbourhoods that are easier to search with respect to all four soft constraints. Integer programming formulations for all subproblems are given and evaluated using ILOG CPLEX 11. The wider applicability of this approach is analysed and discussed. Preprint submitted to Elsevier 23 February 2009
منابع مشابه
Modeling and Solution of a Complex University Course Timetabling Problem
The modeling and solution approaches being used to automate construction of course timetables at a large university are discussed. A course structure model is presented that allows this complex real-world problem to be described using a classical formulation. The problem is then tackled utilizing a course timetabling solver model that transforms it into a constraint satisfaction and optimizatio...
متن کاملUsing fuzzy c-means clustering algorithm for common lecturer timetabling among departments
University course timetabling problem is one of the hard problems and it must be done for each term frequently which is an exhausting and time consuming task. The main technique in the presented approach is focused on developing and making the process of timetabling common lecturers among different departments of a university scalable. The aim of this paper is to improve the satisfaction of com...
متن کاملارایه یک مدل ریاضی جدید جهت برنامه ریزی جدول زمان بندی دروس دانشگاهی بر اساس کیفیت ارایه دروس
One of the important tasks of universities that are usually challenging is university course timetabling problem. They are faced with this problem every year and every term and which is directly effective on education performance. In the university course timetabling problem, the university sources including lessons, lecturers, classes and other teaching sources are assigned to a series of time...
متن کاملA new binary model for university examination timetabling: a case study
Examination timetabling problem (ETP) is one of the most important issues in universities. An improper timetable may result in students' dissatisfaction as it may not let them study enough between two sequential exams. In addition, the many exams to be scheduled, the large number of students who have taken different courses, the limited number of rooms, and some constraints su...
متن کاملGenetic Algorithms for University Course Timetabling Problems
The university course timetabling problem is a difficult optimisation problem due to its highly-constrained nature. Finding an optimal, or even a high quality, timetable is a challenging task, especially when resources (e.g., rooms and time slots) are limited. In the literature, many approaches have been studied to solve this problem. In this thesis, we investigate genetic algorithms to solve t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 37 شماره
صفحات -
تاریخ انتشار 2010